Дополнительный код (представление числа)
Дополнительный код (англ. two’s complement, иногда twos-complement) — наиболее распространённый способ представления отрицательных целых чисел в компьютерах. Он позволяет заменить операцию вычитания на операцию сложения и сделать операции сложения и вычитания одинаковыми для знаковых и беззнаковых чисел, чем упрощает архитектуру ЭВМ. Дополнительный код отрицательного числа можно получить инвертированием модуля двоичного числа (первое дополнение) и прибавлением к инверсии единицы (второе дополнение). Либо вычитанием числа из нуля.
Дополнительный код (дополнение до 2) двоичного числа получается добавлением 1 к младшему значащему разряду его дополнения до 1.
[1]
Дополнение до 2 двоичного числа определяется как величина полученная вычитанием числа из наибольшей степени двух (из 2N для N-битного дополнения до 2).[2]
Представление числа в дополнительном коде
При записи числа в дополнительном коде старший разряд является знаковым. Если его значение равно 0, то в остальных разрядах записано положительное двоичное число, совпадающее с прямым кодом. Если же знаковый разряд равен 1, то в остальных разрядах записано отрицательное двоичное число, преобразованное в дополнительный код. Для получения значения, которое противоположно по знаку, все разряды, включая знаковый, инвертируются, а затем к результату добавляется единица.
Двоичное 8-ми разрядное число со знаком в дополнительном коде может представлять любое целое в диапазоне от −128 до +127. Если старший разряд равен нулю, то наибольшее целое число, которое может быть записано в оставшихся 7 разрядах равно <math>2^7-1</math>, что равно 127.
Примеры:
Десятичное представление |
Код двоичного представления (8 бит) | |
---|---|---|
прямой | дополнительный | |
127 | 01111111 | 01111111 |
1 | 00000001 | 00000001 |
0 | 00000000 | 00000000 |
-0 | 10000000 | -------- |
-1 | 10000001 | 11111111 |
-2 | 10000010 | 11111110 |
-3 | 10000011 | 11111101 |
-4 | 10000100 | 11111100 |
-5 | 10000101 | 11111011 |
-6 | 10000110 | 11111010 |
-7 | 10000111 | 11111001 |
-8 | 10001000 | 11111000 |
-9 | 10001001 | 11110111 |
-10 | 10001010 | 11110110 |
-11 | 10001011 | 11110101 |
-127 | 11111111 | 10000001 |
-128 | -------- | 10000000 |
При применении той же идеи к привычной 10-ричной системе счисления получится (например, для гипотетического процессора использующего 10-ричную систему счисления):
10-ричная система счисления ("обычная" запись) |
10-ричная система счисления, дополнительный код |
---|---|
... | ... |
13 | 0013 |
12 | 0012 |
11 | 0011 |
10 | 0010 |
9 | 0009 |
8 | 0008 |
... | ... |
2 | 0002 |
1 | 0001 |
0 | 0000 |
-1 | 9999 |
-2 | 9998 |
-3 | 9997 |
-4 | 9996 |
... | ... |
-9 | 9991 |
-10 | 9990 |
-11 | 9989 |
-12 | 9988 |
... | ... |
Преобразование дополнительного кода
Преобразование числа из прямого кода в дополнительный осуществляется по следующему алгоритму.
- Если число, записанное в прямом коде, положительное, то к нему дописывается старший (знаковый) разряд, равный 0, и на этом преобразование заканчивается;
- Если число, записанное в прямом коде, отрицательное, то все разряды числа инвертируются, а к результату прибавляется 1. К получившемуся числу дописывается старший (знаковый) разряд, равный 1.
Пример. Преобразуем отрицательное число −5, записанное в прямом коде, в дополнительный. Прямой код числа −5, взятого по модулю:
101
Инвертируем все разряды числа, получая таким образом обратный код:
010
Добавим к результату 1
011
Допишем слева знаковый единичный разряд
1011
Для обратного преобразования используется тот же алгоритм. А именно:
1011
Инвертируем все разряды числа, получая таким образом обратный код:
0100
Добавим к результату 1 и проверим, сложив с дополнительным кодом
0101 + 1011 = 10000, пятый разряд выбрасывается.
Дополнительный код для десятичных чисел
Тот же принцип можно использовать и в компьютерном представлении десятичных чисел: для каждого разряда цифра X заменяется на 9−X, и к получившемуся числу добавляется 1. Например, при использовании четырёхзначных чисел −0081 заменяется на 9919 (9919+0081=0000, пятый разряд выбрасывается).
Реализация алгоритма преобразования в обратный код
Pascal
if a<0
then a:=(not a) or 128;
C/C++
if (a < 0)
a = (~a)|128;
Преимущества и недостатки
Преимущества
- Один и тот же регистр может хранить как n-битовое положительное число, так и (n−1)-битовое число со знаком, с общими для обоих форматов операциями сложения, вычитания и левого сдвига.
- Более удобная упаковка чисел в битовые поля.
- Отсутствие числа «минус ноль».
Недостатки
- Дополнительный код неочевиден для новичков.
- В сложных форматах (таких, как плавающая запятая или двоично-десятичный код) большинство преимуществ аннулируются.
- Модуль наибольшего числа не равен модулю наименьшего числа. Пример: знаковое целое 1-байтовое. Максимальное число: 12710 == 7F16 == 011111112. Минимальное число: -12810 == 8016,дополнительный код == 100000002,дополнительный код. Соответственно, не для любого числа существует противоположное. Операция изменения знака требует дополнительной проверки.
Пример программного преобразования
Если происходит чтение данных из файла или области памяти, где они хранятся в двоичном дополнительном коде (например, файл WAVE), может оказаться необходимым преобразовать байты. Если данные хранятся в 8 битах, необходимо, чтобы значения 128-255 были отрицательными.
C# .NET / C style
byte b1 = 254; //11111110 (бинарное)
byte b2 = 121; //01111001 (бинарное)
int c = (int)Math.Pow(2,(sizeof(byte)*8)-1); //2 возводится в степень 7. Результат: 10000000 (бинарное)
int b1Conversion=(c ^ b1) - c; //Результат: -2. А фактически, двоичный дополнительный код.
int b2Conversion=(c ^ b2) - c; //Результат остаётся 121, потому что знаковый разряд - нуль.
См. также
Ссылки
- ↑ http://matlab.exponenta.ru/fixedpoint/book1/1.php К.Г.Жуков "Справочное руководство пользователя Fixed-Point Blockset" 1.2. Понятие прямого, обратного и дополнительного кодов, Определение 3.
- ↑ http://en.wikipedia.org/wiki/Two's_complement
Если вам нравится SbUP.com Сайт, вы можете поддержать его - BTC: bc1qppjcl3c2cyjazy6lepmrv3fh6ke9mxs7zpfky0 , TRC20 и ещё....